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ABSTRACT

Mode conversion from the fast magnetosonic wave to a slow wave can
amount for the greatest part of power absorption in a two-ion-
component toroidal plasma. It is shown that, with allowance for the
correct form of the rotational transform, mode conversion in a cold
plasma 1is only possible close to magnetic surfaces which do not
cross the resonance i.e. the surface where the wave frequency is
equal to the minority ion cyclotron frequency. Mode conversion at a
layer which crosses the magnetic surfaces is possible if the plasma
is hot and/or the layer is close to the resonance. In this case,
however, mode conversion could be overshadowed by minority ion
cyclotron damping, i.e. the perpendicular component of the wave
vector could fail to reach values sufficiently large to allow
electron Landau damping or second-harmonic majority ion cyclotron

damping to contribute appreciably to the R.F. power absorption.




INTRODUCTION

Recent experiments at high power levels [1], [2] have shown
that R.F. heating at the second harmonic of the ion cyclotron
frequency is a very powerfull method of heating the plasma in
a toroidal device. They have also provided striking evidence
of the fundamental role that a minority of ions can assume in
determining how and where RF power is deposited in the plasma
if their cycoltron frequency is close to the wave frequency.
If the concentration of the impurity ions is sufficiently large
an electromagnetic wave can in fact, couple to an electro-
static one, which, in turn, will be damped either by electron
Landau damping or by ion cyclotron damping. The coupling
efficiency at the mode conversion layer has been studied in
detail by treating the problem as one-dimensional, either by
neglecting the poloidal magnetic field [3] or by assuming its
normal component to be constant on a mode conversion layer [4].
As a consequence of these assumptions the mode conversion
layer would cross the magnetic surfaces. It has already been
pointed out [5], however, that only the component of the wave
vector normal to a magnetic surface can become large. This is
a direct consequence of the fact that the parallel component
kK, of the wave vector has an upper limit beyond which an
electromagnetic wave cannot propagate, and that Snell's law
requires that a wave propagate with a fixed Ky , the toroidal
component of the wave vector. In a cold, uniform plasma one
does in fact have Ky¢ |1G*| ,where G* = % 2 ; (W /C*)
Lui/’[flj((Uiiilg)]; We; , {1; being the ion plasma and the ion
cyclotron frequency respectively, the sum is taken over ion
species and we have assumed lw- 251 > K, U; , w,
being the ion thermal velocity. On the other hand, when finite
ion temperature is taken into account, the field derivatives
normal to a mode conversion layer will remain finite and mode
conversion to a kinetic wave might in principle be possible

at a layer which crosses the magnetic surfaces. In this case,




(1)

however, the component of the field derivative parallel to

the static magnetic field would become large,too so that

mode conversion could be overshadowed by ion cyclotron damping.
Owing to the great importance that the existence and shape

of mode conversion layers can assume in future heating exper-
iments in toroidal dévices , it seems worthwhile to consider

the problem in some more detail. First we evaluate an expression
for the current density induced in a toroidal plasma by a low-
amplitude electromagnetic wave whose frequency is close to the
ion cyclotron frequency or its first harmonic. We then insert
the value of the current density in Maxwell equations and look
for the existence of mode conversion layers. First the plasma is
assumed to be sufficiently cold so that a mode conversion layer,
if present, has to coincide with a magnetic surface. We then
discuss how the results of the cold plasma approximation must

be modified when finite ion temperature is taken into account.

PLASMA CURRENT

An expression for the current density induced in a toroidal
plasma by a low-amplitude electromagnetic wave has been
evaluated in ref. [6] but just for the case where the frequency
of the wave is equal to the ion cyclotron frequency on the

axis and collisions are rare, We assume here that the collision
frequency is sufficiently high X)2>u4/%R.and evaluate a more
general expression valid also for w# Ll;. We approximate a
toroidal plasma by a straight plasma cyclinder, require that
all quantities be periodic inz with period 2"R, R being the
major radius of the torus, and assume the static magnetic

field bo be of the form

B-0Bg+zB,  B,- Bo(4-Tws0/R) Bo=5BoR
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£3)

(4)

We introduce rotating coordinates Vi.:Vj;i Vi for. the
perpendicular components of the velocity Vv , where
Vy=(VeBz -V, Bg)/IBl and neglect terms of the order Q;d(Be/Ba)/d~r
( @; being the Larmor radius), so that the motion of a charged
particle in the magnetic field given by eq (1) reduces to

Vi=:i:QjVi u = cost
where 5= Q30 (4- rwe8/R) , )50+ 20 i@uBioj M €
and W= (VaBa+vVve Bg)/I|B| is the component of ¥
parallel to the static magnetic field. Equations (2) are, of
course, incorrect for particles which are trapped or quasi
trapped. It is assumed, however, that ¥/R<«1{, so that their
number will be small and their contribution to the plasma
currents can be neglected. The value of the magnetic field en-
countered by a particle at a point (r,8) is now approximated

by the value at the gyrocentre (Qﬁ}, whose equations of motion
are assumed to be

T = Yo = 0o+ U (t-t)/QR

)

We then obtain from eq (2)

V5t s Voi exp [‘L\E(t"_to)]

r = Y, + AYC , O =0+wu(t-te)+ o ©

where:
AY = L{vo+[e‘£9-1]_vo'[e+“‘f_4]}/(2§1;°)
AO = LV:[Q_LT-4]+V0-[€+;£—1]k/(20-50)
P = A VRt (£ Qo /)] 2im [Bo+ULt-RIQR]- 3mB. |

We now require the zero-order distribution function to be

Maxwellian, 'go_',': LM /(u*'? Véz U] exp [~ (Ve + V-; )/V; LG 1




(6)

(7)

(8)

and derive an expression for the component of the current

density perpendicular to the static magnetic field:
. (2. 0] . (0%} _V(t‘——t) e i 7 V"E+')dt‘
TS5 Ce/m) [[f vE4 [ e (VVE
-0 - o0

where My My, €5,V , Ww; are the density, the mass,

the charge and the perpendicular and parallel thermal velocities
of the j species, respectively, E - Eoit Ex are the rotating
components of the electric field,y is the collision frequency,
and the primes indicate that a quantity is taken along the
characteristics. Since the static magnetic field does not

depend on z, we require the electric field of the wave to vary
as

oo

E(r. 6. 2.t)=> Ew(r)oxpl[i(NZZ/R+m © - wt)]

W=~ 00

We further assume that the electric field does not change
appreciably over a distance comparable with a Larmor radius, 5
EY (C)oxp (im6')a [14 im (860)-1/2 w2 (A031% ][4+ (AX)IDx +1/2 (AY)
Di/Drn_]-Em(f)QJXP‘\LWL[G + u(t'-t)/qR]}, and perform on the right-hand
side of eq (6) the integration over the perpendicular velocity
first. Neglecting terms of the order (/R or INg+w lw;/(qxQ;50)
with respect to unity and retaining terms of higher order in the
ion Larmor radius only if they are proportional to exp (Q:”f )

we obtain

IJ72 (G -c*/4amiw) ET
m—b\-a/u;

J—+‘2‘: Z‘j (wP\S/ZI-‘an)Z_-m {- UO/_QSO+ Lw(u’éﬁ)-i‘-lne

de_JO xpP 1 [v-rvwa+e (NC\-\-m]u,/ql'{]’l"}-[@bﬂﬂ+’i/2 QZ_

- @

Q2L (ant/rr - 27/0x” )] o} E(x) expli(N2/R+mO- wt)]
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where one has G~ = 23 (WT‘—’S/Cz ) w*/ L8 ssiluive Q30)]
and the sum is over ion species only since we have assumed
charge neutrality to write wpﬁ [ 83 U-)\::{ /L . We now
expand exp [is @] , s =1,2 in a series of Bessel

functions, so that J+ can be written in the form

(9) I*::Z;,(w’,;j/mrtw)f oxp [ N2 /R + mB -WE)] -

. =-00
()

0 (" 2 2 3 ,)2. 2)—] E+
Z l: bhﬂ-rw + Tvn,ln, + ‘/2 Q.D Tm’w'(M/r = /')f 1%

where:
fo3) b ol @
. Y GV [0 M, fraigl-( 28
(10) lw,m = v (w/wg T)e _Joo i (m-w)

Qoqr/uy) dm (wr/29c) ] oxp -7 - L[sQj0-w (2N+M+n)wr’/qR]§ol'r

and:)mwuis the Kroencker symbol. We now assume collisions to

be sufficiently large V> wjMR, so that in the limit wj/£23->0
the main contribution of the integral over v comes from the neigh-
bourhood of =0 . We then substitute in the argument of the

Bessel function Jy;/w(u,‘?'/ﬁqf\z wt/2 qR and, performing

the integration over 7, we obtain

(11) Tn:,svl ~ [WR /(S5 x eV )] exp [Lllm-n|T/2 ]

@ + LT/ g
exp [ (amwha-xY/e* - Im-ni2]de
- \LTT/2
where
e = [2Ngq+m+m]lu; /(259Qq L)
X = YR /(SQet)+ vA/YL

and A=-(W-S0,;5)R /(s o) is the distance of the plane W=
S Q; from the axis of the plasma cylinder. If one has A = O




and collisions are neglected, the integral on the right-hand

side of eq (11) can be taken exactly so that

(13) T _ L LwR Z(5Q400 1€ D] Timomyz (472 €) exp [Eim-n(T/2-1/2€"]

(14)

(35)

(16)

"W\,W

while if A# O only an approximate solution can be found. In
the limit @Q;-> O we then have:

T g [WR /(5900)] [ var /(amigel)]™ [(irazia))

Kig (W) + Lmy2 (IVIs 52|/ VIzgr ) L () 1 -
oxp [-t + ¥*S/e> - tm-wi(2,- i7/2)]

where

o 4yl e gy s e 15

wmh 2o = € (4+9) Re L 2ol >0

) = [(4.*-152')/6‘61]-[(Oj-»o:)-‘:ﬁ((f“d—)‘i]
1/3 2 Q_Q PR +2_ 3
of -1/2 [pxiVi-p2] ) p=1- (Im-wle /4% Y L6¥7/(arss)]

Here \<~o) 1y indicate Bessel functions in the notation of G.N.
Watson [7]. If ¥is not too close toA so that p»1 andlbl« 1in
eqs (15), then eq (14) can be written in a much simpler form

_l_.m(’sw %\ [wR/(sQSD[\/ﬂ_+KL)], [Visgz+ ¥ 1-|m—wl

~
, W

oxp [E59 /€ o Im-nl: (68 /Vivgs -iT/2)]

S ~ 172 | (m-wnye> |/ (¥ Vayg®) | Re Y Ving={>0

~

and



In the most interesting case £ > A , i.e. at magnetic surfaces
which cross the plane W= {; , we then have

a7 Tt (W /4T Q) J-ET(E0) + LR/ (Vasar) 2 Em ()

wm=-0

oxp Lo (N2/R + mO-wE)] S [VITGrey + i(ase)]

wn=-00

oxp [¢(n@+Inm/a _ m/2)* [Ng+ m +n/z]z' [u»s/(qﬂso\/:‘-&)]z}

Here it holds that A = - (W- Sl )R /Lo and for
simplicity we have assumed that there is only one ion species
and that ulaSlso. From eq (16) it then follows that the current
density remains finite at the resonance W= L1 even if the
electric field does not change along the line of force of the
static magnetic field:

(e 1371& (Wes Zamw) (R/VEEZA ) (qQ40 V- a5 /4 i

S JELI-L4+ 1qNswlug/ (A0 Ve )]

m=a=00

when Q>® eqg (18) yields the well-known relation 1 314 (lAJ;:',//-fﬂl&))
[W/ Kty | IE" |while if INQ+ W< (QQjoVe-A/)the current density
is partically independent of K,. This is obviously due to the

fact that owing to the rotational transform the particle passes
through the resonance and cannot remain in phase with the
electric field of the wave. The cold-plasma approximation for

the current density J¥= %(w%j /aTw)wr/ Ty (W- Qg ) & )3 E”

can easily be obtained form egs (9), (15) if it is assumed that:
+ - 0Q \/2, 5 V2 (N
(19) | (B-rwsOIE | < (W) 9Qr )™ 1+ (Ug /9Qese )5 (Nq +

2/90) Y |




DISPERSION RELATION

We neglect in the following electron inertia and terms proportinal
to r/qR with respect to unity, so that we get E;20 and can set in
Maxwell equations Ee3¥Ey, Eax - (R/AR)Ey  Jg 5 Jy + (£/9R) J,
and Jz27J,-(£/4R)]y. We again assume the electric field to vary

as E(£,0,2,£)= 2 Em () xp[i (NE/RsmO-wb)] ang in-

sl w = -0
troduce rotating coordinates for the perpendicular components of
the current density. Setting (&47Wvw/c*) I =G~ (Ex-iEy)ang
substituting Er = EY4u Ey we then obtain from Maxwell

equations (Eeg 2 EYx ZEY ¢
: A, ok
Ch/e YR, ~2E G- 1)/ T2 Buy = =t Ly, - (W/c)E)]

(20) and
L Buw Em

\

(W/£) Yo + [ Co - h/t + h(hed)/c2 1Y, = -
where
i 2 § LGt s /2] Em - (2Tiw/c™) T
Cow= (N/R+wm/AR) - of
(21) W el G SIS W7e) & he' /%
b = wm-Nr?/qr*

and the primes indicate derivatives with respect to r . Elimina-

ting E from egs (21), we finally obtain

(22) ‘f:\,+ [4/c - R /B 1 Yo - [(*”“l’f 3h/t 4+ 2Cu +
Huo / Bow ] Yo = - Bw Ew

and Hp = (hed)Bh /T + 2 (Ch) s X (Cu-h/x) (Cur/e)




(23)

(24)

(25)

We now consider an electromagnetic wave propagating in a two-
ion-component plasma with W %> Qg and Mvh /o L4,
From egs (9), (21) we then have

where (1)

Aehck) ) _1/4 (Wap/c?)
d.'\m.n = Aw. bm.n - 1/2 (U\)?H wu, v

(2) T
Thret (mbyx s DYoeR)

Awm = (N/R+ m/qR)* L Whe W/ [e* (w* Q5]

and bwhn,is the Kroenecker symbol. Since we are considering

an electromagnetic wave, terms proportinal toﬁf‘will, in

general, be small and could be neglect in egs (24). However,

we are concerned here with the problem of finding mode conversion
layers, i.e. just those surface in the neighbourhood of which

the field derivatives of an electromagnetic wave become so large
that these terms become comparable with the other terms of

eq (24). We first simplify the problem by assuming the plasma

. 2 2 — (2}

to be cold. Then since it holds that irn {?D f | TV“,V\v/AWI
w0 we==-0

= O as can be seen from eqs (13), (14) once the ratio Wp/vp

is assumed to be finite, it is clear that only terms propor-
tional to Q;Eﬁevgilcan become large in eqs (24) and that a

mode conversion layer, if present, must coincide with a magnetic
surface £=¥ . Away from a mode conversion layer an electro-
magnetic wave will propagate with finite values of 5LE+/)£1, SO
that in the limit V;30 W;» 0 we have:

il v
W R/ (¢*Quo £ VIS )] 100

m-n|

daM,Vb A AW\:BW\,.'\\,"' b/z Ew%\*




(26)

(27)

(28)

_10_

where ‘6=\)Q/QH0I+LAH/I ,A“:.—(W--Q-Ho)R/_Q_HO

A e=VI+¥* 4+ ¥ , and the principal value of Vir¥® must be

taken if 1¥\>4 . vo
The solution of eq. (23) will then be of the form E é%;m

D‘_,,:,m‘f“ /D where Dm w is the cofactor of diww , and D the value
of the infinite determinantldm'nl. It is then clear that D E*/Jr*
will become large if it is possible to find a valueX of ¥ such
that D(Y) andr is sufficiently close to £ . The problem of find-
ing mode conversion layers is therefore reduced to finding the
roots of DUY=0 . It is now easy to show (see Appendix) that

no solutions of D(t)=0 exist if £>1A|, i.e. no mode conversion to
a kinetic wave takes place in a toroidal plasma at magnetic
surfaces which cross the plane W=({u. Similarly it is found that
no solutions of D(t)=0 can be obtained if Auw< 0 Le. W > Qo

or if the concentration of the minority ionsq:mewmis too low, and

that
N (0= D5 IR/ W e > Au-E >0

is a necessary condition for the existence of mode conversion
layer in a cold, toroidal plasma. On the other hand, it can be
proved that there exist reasonable values of the plasma para-
meters satisfying eqs (26) for which D(£)=0, Strictly speaking,
what can be proved (see Appendix) is that for any given value

f < &w  of £ there exists at least one valueY{of v,

(An=E) iR (w5 Y /W oy < Oon

such that D(¥)=0,
These results become more intuitive if we transform back eq (23).

We then obtain

Y (r,0)= (kir-&)-E"(x,©)

where &, = - ((AJ::D ety {LOL/ (W %)+ 1/2 "LUO?"/[-Q-HO (- Qu+ V)]
and Ky = [N/R +(4/qRYJ/026 ] so that the roots of Dif) correspond
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to periodic solutions of the differential equation.(K:-EuYEf=0
In the limit Q»® we then have the well-known relation N*/R™ £,=0
and the mode conversion layers degenerate in the open layer
of ref [3]. Obviously the infinite determinant \dwmw | does N
not converge in this case. No periodic solutions of(Kf"E")E'=o
can be expected if £> &uo since then the losses at W= cannot
be accounted for. If we now define a cut-off of an electromagnetic
wave as the surface where 2% /J¢ )Y /2x*= O , then the cut-off
surfaces can be found in a way analogous to the mode conversion
layer. For eq (25) yields 2DY¥/9¢ l'.)LY/DrQ‘-.-O at v=x" if
(29) [“‘H-i\l/rz*' 2 Cw' + Han /B‘M-.l\rm‘ Bm E:‘=O
at Y=¥" . Thus since eq. (29) admits non trival solutions only
if D*(Y'*)=O , where D*(!\ = |d.:n‘vul = ‘ A¥M~ %m,w ) 5 dW‘—.W‘
Ahree vBuoeh Tl /et @ 2.6 viHwm /B
the equation of a cut-off surface will be £=x"with I>Lr*)=o.
Therefore the smaller the ratio IAm/Olw,m\the closer a cut-off
surface will be to a mode conversion layer and hence the less
effective mode conversion will be. Let us now give some order-
of-magnitude estimate Of how the results of the cold-plasma
approximation must be modified when finite ion temperature is
taken into account. For simplicity we set Nz=O and first assume
| Aw-1 a8 | >> (Un /400 Y% [44 (Wn/4Que x )2 2/
]3’-3*/‘391\1 ;, SO that ion parallel motion can be neglected.

Transforming back eq. (21), we then obtain

300 W(re) = }-(1/aR) /26" + (Wh/c?) [w/ (W= o)
172 qwR/ [ Qe (Au-tc0s8) - V4 [ Qo R /(&5

£eonB ). (4/¢* D /20% 4 >>/oc2) ) ET(x0)

where Ayp=-(W-205.)R/(2Q,. If it now holds that |&p\214k|
> X and Aw- Yt is sufficiently large, then eq (30) holds for

2 z 2 ( 2 R/(A -I]
all values of © and, as long as Wpp Qs /C ¢« &4 (£/QRY. D
the results of the cold-plasma approximation are little affected

by finite ion temperature, except of course close to a surface




W e

f=Y ,D(f\=() Note, however, that close to a mode conversion
layer =Y an electromagnetic wave propagates with rather large
values of Ki . For close tof we have in fact 1(1/9qR)* DzE+/06"\
< 172 "LR/(A“ -X ) so that terms of the order (W- QW / (% U Y !

™
98 Bl L e AMIR] Qwo C"/ (v Lofp u,...) can become comparable
w1tn or even less than unity if r is too close to & , in which

case ion cyclotron damping can no longer be neglected and may
possibly overshadow mode conversion. This is due to the fact
that the closer an electromagnetic wave approaches the surface
rsE the more and more its group velocity points in the %]
direction. The wave then propagates around the surface ¥ = r
toward regions of decreasing magnetic field strengh, while the
parallel component at the wave vector increases (magnetic
beach effect [6]). Thus if T is too close to Aw, the wave will
be absorbed by the plasma via ion cyclotron damping before
undergoing mode conversion. In this way one could in fact explain
the high direct ion heating observed in the T.F.R. tokamak [9].
On the other hand, if one has £ >1&u| and close to the surface
£0s0 = X = [Aan-172 R (W- To LT (0 17, O  fooagy |

it holds that }AD Y00 | <« v/a R (W @-/¢?)- CARAES

as could be the case in a deuterium plasma with a minority of

hydrogen ions,A5=15u, then mode conversion to a kinetic wave

can be effective close to the surface Y(»©= X and the in-
fluence of the rotational transform can be neglected. Here again
mode conversion can be overshadowed by ion cyclotron damping.

In fact the normal component of the field derivatives of an
electromagnetic wave becomes large on approaching a mode con-
version layer |JEY/Ix% =~ (Wpp/¢€) (1L8p-X%X1/R i<

Then since the layer crosses the magnetic surfaces X;, will become
large,too Xi & 1/4R FET/20% » XY/ Q*R* D*E*/Ix* g0 that if

X A8 too close to OAw we [(Aw-X 5/R1 (¢ /aR Y (Wes oL PC.)
(185 )ﬂ/R) *an electromagnetic wave will be strongly damped before
reaching the mode conversion layer. Note that, in order for an
electromagnetic wave to reach the surface rcos9=X undamped and

be mode-converted there, one requires that:u

AR/ (@@, [ au-T1/R]™ LR/ 185-%1172> (Wen§, /) (£/aR) (180X IRY

* y
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(1)

CONCLUSIONS

An expression for the current density induced by a low ampli-
tude electromagnetic wave in a plasma confined by a toroidal
magnetic field with finite values of the rotational transform
has been evaluated. The wave frequency has been assumed close

to the ion cyclotron frequency ©Or its first harmonic. The con-
dition necessary for mode conversion from an electromagnetic
wave to an electrostatic one has been evaluated on the assumption
that the plasma is cold. It is found that if the wave frequency
is less that the ion cyclotron frequency of the minority ion
component on the axis mode conversion is possible at magnetic
surfaces which do not cross the plane where the wave frequency
is equal to the local value of the ion cyclotron frequency. When
finite temperature effects are taken into account it is found
that mode conversion becomes possible at layers which do not
coincide with a magnetic surface, but only if the plasma is
sufficiently hot and the mode conversion layer is not too close
to the plane W= Qw

APPENDIX

We investigate in the following the existence of roots of the
equation DI(£)= 0 , where D(£) is the infinite determinant
\dMﬁ»l and the quantitiesdwm»are given in eqgs (24), (25) To this

purpose let us first write D(£) in a more usable form:

M
D(cy = gﬁw, ( [)H JE /\Wu)
M- 00
where Du= |ldwmw /Awl -Ms(mmn)s ™M
Since the quantities A, are positive andDwnis, for finite
values of Q , absolutely convergent, the roots of D(f) will be
close to the roots of Dg if M is chosen sufficiently large.

After some simple algebra Dy can be reduced to the form




A (2)

A (3)

A (4)

.

. L R2M+1
Di = (ta) | & aza 1/ (L o)
where
%Mmu. = (XM-S“M“I + 8\W\t,IIMl-i--.L ¥ Bl%ﬂ,th—i

X wmome U/ Wew uJR/(A-;MQ_mCZI\

Am = Q’[LK"'w;HwR/(AmQHoCQ_I)

and A= V9i+8* + ¥ ; ¥ = YRR /_Q_Hor = e ey L
A & 2 (W NaYR 7/Qeas For simplicity
we now assume N = O and expand l%h_wi according to the row
(o) L] (o) 0wy
so that 1Q, .1z 28w Qn and the quantities Guw , G,

can be obtained from the recurrence relation

qm = dm qw\.—ﬂ. = qm-ﬁ.
with C;Ej: 4 ,C“:)= Ao / % and Q:\'—' s Q?= Ay
It is now easy to show that no real solution of C,:_‘.\‘ (£y=0
(or C((,'-,:u;\: 0.« ) exist if y slafl .. For, with 14/ ¢ he
one has neglecting collisions, ¥% u8/%f and ™ = Vi-(a/f+u(ar/ce)
so thatolp is complex while the quantities Olw are real. It then
follows from the recurrence relation that the quantities QCwm ()
are real for m#M , so that in order to have GmU)=0 it should
hold that Cr.,(x1=0 and Gfa(x)=0 : 2This -is;:;pot
possible however, since then it would follow that G, (£)=0
for all values of m, whereas we have Cli;": 4 and C,S‘(rki.
Let us now assume that |A/L\>41 and prove that no real
solutions of C‘ﬁi!\= 0 exist if A<O0O (W> .an\. For,
with A<QO one has dlw> 2 for all m, so that Cu(£)/Cwm-1 (£)>
2-CGu (£)/G,. (L) and since C‘:’)(L) /qi?(r) = Oo/2 > 4
it then follows that GR(£)= ar G (L) - Gr.p (EY£ 0
It is now easy to prove that Quich 4.0 if:A >0 -and .Y <,
< ) Ois \An-r\/[(wz-Q:;)R]since then it holds that Ol < O, <-2 ,

so that q:?(Iﬁ/q(:_‘(n <4 and of Gel(c) 7C pea(EA> A -
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In a similar way it can be proved that Q(g (r)#0 if

Aw <0 or Q<¢¥® , so that N>v >0 is a
necessary condition in order to have roots of D(x)= O

We shall now prove that for any given value L< & of L

it is always possible to find a value Y~ >N of M such

that c“;‘ (Y= 0 . For, since C‘t: (£) is a polynominal of
degree m + 1 in7, there will be m + 1 values Vg (S= 0,1, m)
of q for which C,‘("’(f)'o Let us first prove that if the zeros

of qm(!‘-) are real and intersect the zeros of G'O , (E) i.e.

Ylm<"l.-.\ <”)mt<"1 then the zeros of C,m.(ﬂare real and
intersect the zeros of Cm (£) . For, since Cwm £ )=i= Clm- (£)
when V= Vf.w., and we have assumed that Q(O: (f) changes sign
g-1 (o) 3

once for Vs < vl > so will C . (£); on the oth(eof( \,
hand for M- * @ qmu(IU has the same sign as(,,_, c
and since we have assumed that Cm_l( Jdoes not change sign for
M < V]:M_\ or > Yues o+ there will be a value of N <YW and

a value of 0> VI::, for which C‘l::m(l:) = O . .s0 that the ‘zeros

of ql::H(f\ will be real and will intersect the zeros of qm(i)

We now have G:ﬂ (EY=ol/2 so that "L 0 QuoA./
C(W-WIRT] and since, as is easy to see, ML <M < 1y

for ¥>A it then follows that there will be at least one value

N* of M for which Gg (£)0and <<’
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